MarginUp Project

Assessing impacts of new cropping systems on Biodiversity and Ecosystem Services

Presented by:
Michael Glemnitz (ZALF)

By introducing climate resilient and biodiversity-friendly non-food crops on marginal and low-productivity lands, MarginUp! will increase farming system resilience, enhance biodiversity, and promote stakeholder participation.

MarginUp! case studies

https://margin-up.eu/

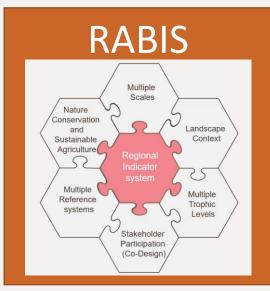
Landscape-scale boundary Regional-scale boundary 520 km

Wide range of new cropping systems to be assessed

l	Case studies	Marginality factors	New cropping systems
l	GR, Western Macedonia	Abandoned, lignite mines	Energy crops (Robinia pseudoacacia) + biocosmetic (Lavandula angustifolia)
ž	GE, Havelluch	Drained peatlands	Paludiculture crops (Phragmites australis, Typha spec.)
	HU, Kecskemet	Desertified, abandoned orchards and vineyards	Salix viminalis, Sida hermaphrodita
	SW, Norrbotten	Arable land in high latitudes	Brassica rapa ssp. oleifera
	ES, Extremadatura	Dry, abandoned, low- fertility arable lands	Cannabis sativa L. Hibiscus cannabinus L.

WP2 Impact on Biodiversity and Ecosystem services Mirroring species habitat requirements with characteristics of new land use

How to assess the effects of land use changes on wildlife (species)


→ Mirroring species habitat requirements with effects of new land use

Study the ecology/Population dynamics of target species

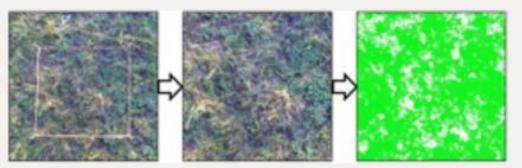
Input from Agronomists

Regional indicator system RABIS

Changes caused by new cropping systems/Land use changes

Field Monitoring

Crop stand height


Weed flora composition, using AI tools

Insect predators abundance/biomass

Pollinator nesting activities

Crop stand/Weed flora coverage, using image analysis tools

GIS-based ESS scenarios (based on INVEST model)

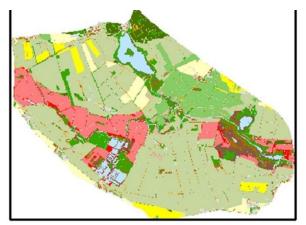
rewetting scenarios for german UC

Scenario 0: Baseline (current status)

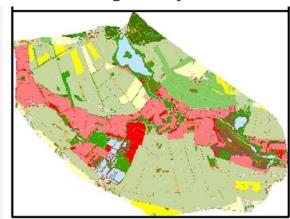
Pessimistic scenario:

Only 30% of the GHG reduction targets will be met.

 How a change of land cover/cropping system will affect floral resources, nesting suitability and total pollinator abundance?



 How a change in land cover/cropping system will affect the amount of GHG emitted from or sink into a landscape?


Intermediate scenario:

60% of the GHG targets will be achieved.

Optimistic scenario:

Full achievement of GHG reduction targets by 2045.

Thank you very much for your attention!

