Insect Biodiversity Across Cropping Systems on Marginal Lands

Date October 8, 2025 Farming for Bio-based Materials and Biodiversity Webinar Jenny Lazebnik

MARGINAL LANDS, INDUSTRIAL CROPS
AND INNOVATIVE BIO-BASED VALUE CHAINS

This project has received funding from the European Union's Horizon Europe Research and Innovation Programme under Grant Agreement No. 101082070.

Why insect biodiversity?

- Insects are key to ecosystem functioning and food webs
 - pollination
 - pest control
 - decomposition.
 - Biodiversity is a sensitive indicator of land-use change and farming practices.
- Declines in insect diversity = early warning for ecosystem health and resilience.

Research questions

- How do cropping systems (strip intercropping vs. conventional) shape insect communities?
- Do effects vary across countries and types of marginality?

Cropping systems

Strip intercropping:

Rows included (slightly different combinations per site): Miscanthus, Safflower, Crambe, Hemp, Melilotus, Lavender, White Mustard, Sorghum or Castor

Monocultural:

Each country had it's own monocultural field for comparison: wheat (Spain), alfalfa (Italy) and maize (Serbia)

Sampling methods

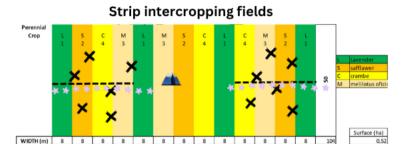
- Malaise trap (flying insect catch)
- Pitfall trap (ground dwellers)
- Sweep net (vegetation dweller catch)
- Flower counting and identification (resource availability)

Study design 2023-2024

Strip intercropping fields all sampling done during week of peak safflower flowering total sweepnet samples: 12 Surface (ha) 0.52 WIDTH (m) 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 Monocultural fields

total malaise samples: 4

total flower counts: 12



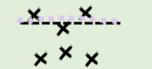
malaise trap

--- sweep and flower count transect

× pitfall trap

Study design 2025

Monoculture fields


weep transects done AT FOUR TIMEPOINTS:

1. peak crambe flowering

2. peak safflower flowering

3. peak lavender flowering

4. peak melilotus flowering

flower counts for one transect per field per timepoint

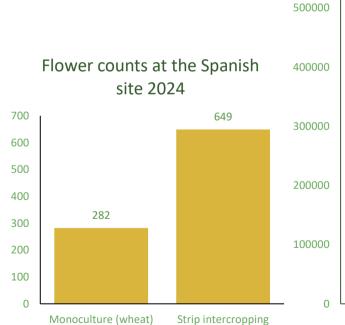
possible: malaise traps also set up for TWO WEEKS:

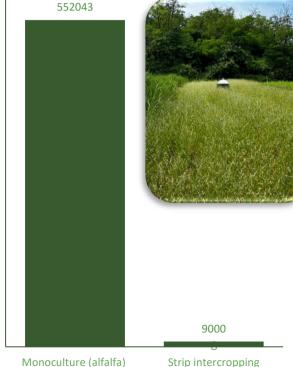
ONE week peak crambe flowering NE week peak safflower flowering

total sweep samples: 16 total malaise samples: 8 total flower counts: 16

Collected data

- Insect biomass, eDNA species identification, numbers of species for 3 trap types:
 - Sweep
 - Pitfall
 - Malaise
- Flower identification and counts


Flower resources


Flowers at Italian site (2023 during alfalafa bloom)

600000

More flowers at strip-intercropping sites? ... not always

Numbers of taxa- (a measure of species richness) Sweep net results: 2023

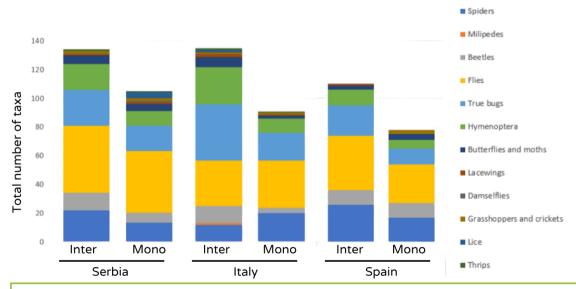


Figure 1. Number of insect taxa in sweep net collections in strip intercropping compared to monocultural cropping systems in three countries in 2023

Sweep net results: 2024 (2025 coming soon)

In general: more taxa are found in sweep net catches at *strip-intercropping sites*

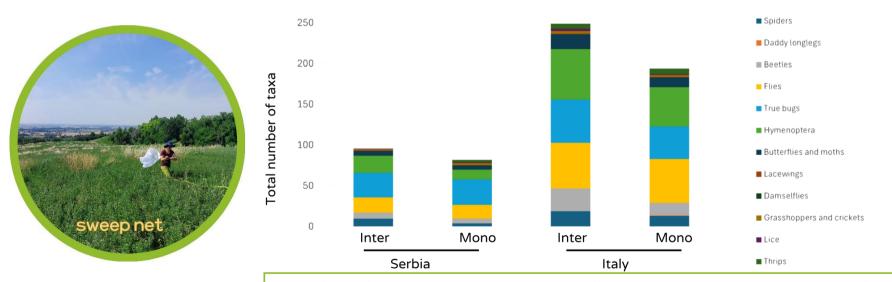


Figure 2. Number of insect taxa in sweep net collections in strip intercropping compared to monocultural cropping systems in three countries in 2024 (Spanish results not yet available)

Community analysis: results in 2023, 2024

In general: each country site has a very unique species community

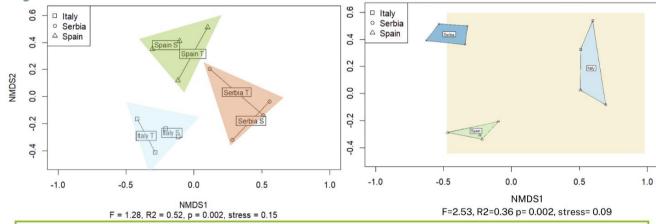


Figure 3. Insect communities in Malaise traps in three different countries in 2023 (left) and 2024 (right)

What we've learned so far...

- Each region with it's own marginality conditions has unique insect community
- Cropping system matters: strip intercropping often supports higher insect richness and more functional groups, especially at flowering stages
- Temporal sampling is essential: single timepoints miss major shifts in diversity and activity.

Beyond biomass: what does this mean?

- Insects respond not only to crop type but to habitat complexity and resource continuity.
- Strip intercropping creates a mosaic of microhabitats → supports more taxa and functional diversity.
- The high regional variability shows that "one-size-fits-all" biodiversity strategies don't always work across Europe's marginal lands.

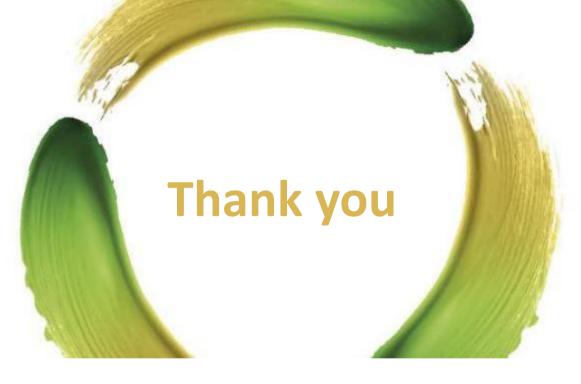
13

Why this matters for farming and policy

- **Ecology:** Multi-method, multi-timepoint sampling reveals a fuller picture of insect communities.
- Farming: Crop diversification through strip intercropping can support a broader range of insects, including pollinators and natural enemies.
- Policy: Marginal lands offer opportunities to link biodiversity goals with bio-based crop production.
- **Take-home:** Diversifying crops on marginal landscapes helps embed biodiversity into productive farming.

Midas

MARGINAL LANDS, INDUSTRIAL CROPS AND INNOVATIVE BIO-BASED VALUE CHAINS



MIDAS Project

info@midas-bioeconomy.eu

SCLTUB

